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It is shown that the presence of energy dissipation in particle collisions results in degeneration of their 
random pulsations and a decrease in pulsation-induced stressed and favours instability of the system. 

Collisional dissipation by particles suspended in a gas flow decreases random pulsations of both phases, 

thus inevitably causing a decrease in the pressure and the quasiviscous stresses in the disperse phase. This effect 
is especially manifested when the particle concentration increases in a gas suspension. On the assumption that 
momentum and energy exchange between particles is accomplished due to inelastic collisions, the effective 

temperature and the modulus of elasticity of the pseudogas of particles are also determined. 
The discovery of the physical effects that are attributable to the collisional dissipation require, naturally, 

an exact account of the interaction between individual particles, which cannot be met successfully using a purely 

continuum model. For such an account a microscopic approach that is based on results of the kinetic theory of dense 
gases and is rather extensively described in the literature [1-4 ] is usually adopted. However since the effective 

stresses and the pulsation energy flux in both phases depend mainly on the pulsating flow of the latter, the problem 
of correct closure of the conservation equations with account for pulsations in the system of these equations remains, 

in fact, unsolved [5 ]. 
In [5, 6 ] these pulsations are considered on the assumption that the pulsation energy is equidistributed 

with respect to the translational degrees of freedom of the particles due to the collisions between the particles. The 
equations of conservation of mass and momentum of both phases and the equation of the pulsation energy of the 
dispersive phase have been formulated. However, the influence of energy dissipation in particle collisions, which 

make a specific contribution to different characteristics of pseudoturbulent pulsations and determine, in turn, the 

effective pulsation pressures and the quasiviscous stresses in continuous and dispersive phases, has been neglected. 

In the present work such an account is made for monodisperse systems of relatively coarse particles suspended in 

a gas flow. 
In accordance with [6 ] we shall consider a system of particles of radius a and density dl characterized by 

the ensemble-averaged velocity of the particles <w>,  liquid velocity in its specific volume <v>,  volumetric 
concentration of particles <p >, and liquid pressure <P>.  We represent the local values of the above variables in 

the form 

W = ( W ) + W ' ;  v = ( v ) + v ' ;  p = ( p ) + p ' ;  P = ( P ) + P ,  

where primes denote pseudoturbulent variables, which depend on the pulsation of the phases. 
For the collision force acting on an individual particle from the side of the other particles, surrounding it 

in a one-dimensional flow, in which the acceleration by the field of external mass forces and the mean velocity of 
interphase sliding are collinear, we write the expression [6 ] 

f c =  d l ~  [Aw'+B(uoW' )uO ],  Uo--Uu, (1) 

where A and B are unknown coefficients to be determined. 
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Hence the energy dissipation in inelastic collisions per unit volume of the medium and per unit time may 

be determined in the following form: 

dip 
- - - ( A  ( w ' 2 )  + B q c + ( f ' c W ' ) =  n '2 wl )) .  (2) 

Here the subscript indicates the direction along the first coordinate ares, which coincides with that  of the sliding 

velocity u of a liquid. 

On the other hand,  qc may be represented as the product of the collision frequency of the particles by the 

mean energy loss per collision, i.e., 

q~ = G z  Vo o.  (3) 

For v 0 we may use the expression for rarefied gas viscosity [7 ] 

(JrO) 1/2 
v 0 = 16n2a 2 -~- 

On the basis of the Carnahan-S ta r l ing  model [5 ] we repsent the function Z as foIlows: 

o ~ o ) -  1 
Z =  

4p 

1 +p + p 2  + p 3  
a ( p )  = - 

(1 - p)3 

The procedure for calculating the pulsation temperature of a gas of particles 0, is described in [6 ]; its final 
form is 

2 
O = r n u 2 ( R ' 2 ) M  2 x " M =  3 + 1  d l n K ( p ) .  

[y + (x + y) x] 2 ' 2 (1 - p )  2 dp ' 

K(p) =_3~ ( 1 - p ) 2 .  
8 1 - 1.17/9 z'3 ' 

2 1 ( R  'z)  = p  
l + 2 p  4 - p  

( 1  - -  p)4  

(4) 

A . B . K (p) dl 
x =  2Fu ' Y =  2Fu ' F =  tea " t o -  do .  

We assume that y = - a x  and write an equation stemming from (2) and (3) with account for relations (4): 

~ - 3 = s ~ o )  
If t4dt 

o (s 2 - tz) 2 

1/2 

/ ( I x  I I ~ ( x +  1 ) - x l ) ;  

3 x g  c (G(p)  - 1) 2 (2 Ix I - 1 ) ( o r -  1) 
S ~ ) - - -  M ~ / ( R ' 2 ) ;  s = 

2 v ~  g ( p )  (or -  1) Ixl - ~  

(5) 

The calculation of the coefficients A and B, which determine all the statistical characteristics of fluctuation, 
including the effective pressure P and temperature of the gas of particles 0, is simple though rather cumbersome 

and is reduced to the following sequence of operations. 

From the isotropy condition for the pulsations 

f dwdk [l-I/wl,w 1 (co , k) - tPw2,w 2 (oJ, k)] = 0 ,  
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TABLE 1. s, x, y as Functions of a, Calculated by Eq. (6) 

cr s x y a s x y 

3.010 

3.020 

3.030 

3.050 

3.070 

3.080 

3.090 

1.577 

1.558 
1.539 

1.506 

1.476 

1.462 

1.448 

-5.595 

-6.152 

-6.880 

-8.858 

-12.493 

-15.752 

-21.715 

16.840 

18.578 

20.845 

27.018 

38.355 

48.517 

67.100 

3.095 

3.097 

3.100 

3.103 

3.105 

3.107 

3.110 

1.442 

1.440 

1.438 

1.433 

1.430 

1.428 

1.424 

-26.106 

-28.022 

-30.132 

-38.709 

-44.361 

-51.918 

-71.602 

80.800 

86/790 

93.410 

120.113 

137.741 

161.310 

222.681 
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Fig. I. Plots of pulsation temperature (a), pressure (b), and modulus of 
elasticity (c) vs particle concentration for various h (the figures at the curves). 

2 } t 4 
, x ( M u ) 2 ( R ' 2  <w,2>=~ > - dr= 

0 (s 2 t 2) 

=(w~ 2)= (x+y)2(Mu) 2 ( R ' 2 )  } t 2 ( 1 -  t 2) dt 
2L 2 0 (s 2 - t2) 2 " 

(6) 
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L llJI3s22+  -  2 1 - s ( - s  2 1)  In  s + 1 
- - 1  = ~  - s - l "  

(cr-  1) (~r- 1) 

The functional L is written in the form [6] 

L = y + ( x + y )  x ,  

and y and x are expressed as functions of cr and s 2. For this, we determine the functions S = S(cr) from Eq. (6) 

and hence x, y = x(a), y(cr). From (5) at the fixed value h = kKc/~ we determine p = p(cr) or the relation 

a = or(p) reciprocal to the latter. Now it is easy to determine the sough values of x and y. The calculations show 

that the condition cr >__ 3.0 is physically meaningful (see Table 1). Here equality corresponds to the case of zero 

dissipation in collisions of particles of the dispersive phase. 

Calculation results are shown in Fig. 1. The curves corresponding to h = 0 pertain to collisions of absolutely 

elastic particles and coincide will the curves obtained for P, 0 in [6 ] with neglect of collisional dissipation. Moreover, 

we note that the calculated pulsation energies are in qualitative agreement with results reported in [7-9 ]. Some 

increase in particle pulsations begins with an increase in their concentration, and when the latter attains 0.2-0.3 

the pseudoturbulence undergoes a substantial decrease. It is also seen that with an increase in the concentration 

the effect of the dissipation on the pulsation energy and the pressure of the gas of particles is more pronounced 

than for a dilute mixture (Fig. la, b), which is explained by an increase in the collision frequency of the particles. 

Therefore the substantial dissipation in collisions should favor a decrease in both the pressure and the quasiviscous 

stresses with an increase in the concentration. The modulus of elasticity of the dispersive phase at a high 

concentration of it (h > 100) can become negative, which entails loss of thermodynamic stability and, consequently, 

stratification of the initially homogeneous bed (Fig. lc). In any case, with enhancement of the dissipation the 

conditions for disturbance of the hydrodynamic stability of disperse flows are less stringent. 

It is worth noting that experimental investigations of the effect of passing from a uniform to a nonuniform 

state of fluidization are a more complicated problem that is generally agreed. As a result, a substantial scatter of 

experimental data is observed that only allows a conclusion about their presence and influence on the mentioned 

effect of cohesion forces acting between particles [10 ]. However, in any case the energy lost by colliding particles 

may be taken as some effective cohesion. The available rather numerous data on the tendency toward formation 

of channels and macroscopic aggregates of particles with a decrease in their size may also confirm the disturbance 

of thermodynamic stability upon enhancement of collisiona! dissipation or cohesion of particles. Actually, in increase 

in the number of particles at the expense of a decrease in their size at constant volumetric concentration causes an 

increase in collision frequency and favors stratification. 

The author thanks Yu. A. Buevich for fruitful discussion of the results of the work and valuable comments. 

N O T A T I O N  

a, particle radius; dl, do, density of the particle material and the liquid, respectively; K(p), function 

stemming from the model of jet flow around particles; s, function introduced into (5); Ww, w, spectral density; k, 

wave vector; co, frequency; m, particle mass; Kc, coefficient characterizing the energy loss in a single collision 

between particles; qo energy dissipation in the pseudogas of particles; 0, effective temperature of the gas of 

particles; P, pressure of the particles; u, relative liquid velocity; v, w, liquid and particle velocities; u ~ velocity of 

free fall of a particle; p, particle concentration; v0, viscosity of the pseudogas of particles; h, dissipation parameter; 

Z, Enskog factor; n, number density of the particles; A and B, coefficients introduced into (1). 
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